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Hypercalcemia is the most common paraneoplastic syndrome. There are 
two pathophysiologic groups of patients manifesting malignancy associated 
hypercalcemia. One group suffers from tumors that metastasize to the skeleton 
and cause Local Osteolytic Hypercalcemia. The other group suffers from tumors 
that lack skeletal involvement and cause Humoral Hypercalcemia of Malignancy. 
A PTH-like, adenylate cyclase-stimulating factor(s) has been implicated as the 
causative agent in Humoral Hypercalcemia of Malignancy. As part of the effort to 
isolate and purify this factor, studies were undertaken to define some of its 
physical characteristics. It was found that, like bPTH(1-34), this adenylate 
cyclase-stimulating factorfs) is not sensitive to severe reducing conditions. 
Also similar to PTH, the factor(s) was found to be sensitive to oxidation by 
hydrogen peroxide. However, it is oxidized much more gradually than is bPTH(1- 
34). It was found that the factor(s) does not irreversibly lose its bioactivity 
when exposed to pH's ranging from 3 to 10. Finally, initial attempts to generate 
an active peptide fragment by partial digestion with cyanogen bromide and initial 
attempts to ascertain whether the factor(s) is a glycoprotein, using lectin 
affinity columns, are described. 
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Figure 1 
Standard dose-response curves generated by bPTH and ACSF. 

Figure 2 
a - Dose-response curves generated by bPTH(1 -34) exposed to 
reducing conditions. 

b - Dose-response curves generated by ACSF exposed to 
reducing conditions. 

FIGURE 3 
a - Dose-response curves generated by bPTH(1-34) exposed to 
hydrogen peroxide for varying lengths of time. 

b - Dose-response curves generated by ACSF exposed to 
hydrogen peroxide for varying lengths of time. 

c - Loss of bioactivity of bPTH(1-34) and ACSF with increasing 
duration of oxidation. 

FIGURE 4 
Dose-response curves generated by ACSF after having been 
sequentially oxidized and then reduced. 

FIGURES 
a - Effects of ammonium acetate adjusted to various pH's on 
the renal adenylate cyclase assay. 

b - Profile of bioactivity of bPTH(1-34) and ACSF exposed to 
various pH's, assayed in ammonium acetate. 

c - Profile of bioactivity of bPTH(1-34) and ACSF exposed to 
various pH's, ammonium acetate lyophilized prior to assay. 

FIGURE 6 
a - Concanavalin-A positive control: 125l B- HCG elution profile, 

b - ACSF bioactivity recovered from Concanavalin-A column, 

c - ACSF bioactivity recovered from Wheat Germ Lectin column. 
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In 1921 Kramer and Tisdall introduced a chemical method for the direct 

measurement of serum calcium (1). With the modifications of Clark and Collip 

(2) this test became routinely available for use in both clinical medicine and 

research. Not very long after the advent of this technology, Zondek et. aL (3) 

recorded the first observations of hypercalcemia in a patient with malignancy. 

Since this report, much attention has been given to malignancy - associated 

hypercalcemia (MAHC). Today it is recognized to be the most common 

paraneoplastic complication. 

Ten to twenty percent of all cancer patients (4) and fifteen to forty 

percent of patients with selected neoplasms (5) develop hypercalcemia at some 

point in their disease. This makes MAHC the second most common cause of 

hypercalcemia in the general population; primary hyperparathyroidism is the 

most common cause. Since the latter is often an asymptomatic, ambulatory 

disease (6,7), and since cancer patients are more frequently hospitalized, MAHC 

becomes the most common cause of hypercalcemia among inpatients (8,9). 

Mundy, Cove, and Fisken have looked at the overall incidence of MAHC most 

closely (6). They studied 207 patients presenting with hypercalcemia in 

Birmingham, England, a community of approximately one million people. MAHC 

accounted for thirty-five percent of all hypercalcemia patients in this 

population, an incidence rate of 150 new patients per million population per year 

(6,9). 
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Although hypercalcemia is a frequent companion of malignancy, it is not a 

ubiquitous one. That is to say, it seems to be associated with only certain types 

of cancer. For example, hypercalcemia rarely accompanies gastrointestinal 

cancers (9), and although associated with squamous lung cancer, it is rarely 

associated with either adenocarcinoma or small cell carcinoma of the lung (10). 

The syndrome has been repeatedly shown to occur almost exclusively with a 

specific subset of malignancies (8 -15). These are: breast carcinoma, multiple 

myeloma, squamous tumors of lung, esophagus, head and neck, skin, cervix, and 

vulva, renal cell carcinoma, urothelial carcinomas, malignant lymphomas 

including Burkit's lymphoma, ovarian carcinoma, and lymphosarcomas. This set 

of neoplasms can be classified further based on the presence or absence of 

skeletal metastases. Mundy and Martin (9) use these two critera, histology and 

metastatic involvement, to define 3 groups of tumors associated with 

hypercalcemia: solid tumors without skeletal metastases, solid tumors with 

skeletal metastases, and hematologic malignancies. Stewart et. aL (8) combine 

the hematologic malignancies with the solid tumors and simply consider two 

groups: those tumors associated with skeletal metastases and those tumors 

with limited or no skeletal metastases. Looking at the tumors either way, it is 

clear (10-15) that breast cancer, multiple myeloma and lymphomas are the 

tumors that cause hypercalcemia in the presence of skeletal metastases. The 

squamous, renal, urothelial and ovarian tumors are those that cause 

hypercalcemia in the absence of skeletal involvement. 

These distinctions have implications for pathogenesis. Neoplasms that 

require an extensive skeletal tumor burden to cause hypercalcemia most likely 

exert their hypercalcemic effects locally, within and around metastatic lesions 

in bone. On the other hand, the fact that some neoplasms can cause 
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hypercalcemia without a skeletal tumor burden suggests that they may exert 

their hypercalcemic effects over a distance, perhaps via a humoral mechanism. 

Both of these general mechanisms will be discussed below. However, it is 

necessary first to consider their common endpoint, increased bone resorption. 

In both types of MAHC, with or without bony metastases, excess calcium 

comes from the skeleton (8,9). Normal calcium homeostasis relies on the 

balance struck between the gut absorption, the skeletal turnover, and the renal 

excretion of the ion (5,6,16). Several lines of evidence have established that 

increased skeletal bone resorption and neither gut hyperabsorption nor decreased 

renal clearance of calcium accounts for the hypercalcemia associated with 

neoplastic disease. First, in a study of fifty unselected patients with MAHC, 

Stewart et al. found mean plasma 1,25 dihydroxy-vitamin D (1,25 (OH)2 Vit. D) 

values to be markedly depressed in both patients with bony metastases and in 

patients without bony metastases (14). Since 1,25 (OH)2 Vit. D is the major 

factor mediating intestinal absorption of calcium (5,17) and since calcium is 

malabsorbed in its absence (5,18), it is, therefore, improbable that calcium 

hyperabsorption is the cause of MAHC. Further evidence comes from the 

observations that dietary calcium restriction does not mitigate the 

hypercalcemia in either humans with MAHC (19,20) or in animal models of MAHC 

(21.22). Finally, Coombes £i. al (15), using radioactive calcium intestinal 

absorption techniques directly showed that both groups of patients with MAHC 

had depressed levels of intestinal calcium absorption. Hence, the excess calcium 

in MAHC does not come from the diet. 

The evidence against decreased renal excretion of calcium is equally 

compelling. In fact, Stewart £i. al (14) found just the opposite; fasting urinary 

calcium excretion was increased in patients with MAHC. It was higher in these 
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patients than in either normocalcemic cancer patients or patients with primary 

hyperparathyroidism. Similar observations have been noted repeatedly 

(10,13,15,23,24). For a given filtered load, the nephron, rather than holding on to 

calcium, excretes greater amounts. This is true whether one measures 

fractional calcium excretion or twenty-four hour urine calcium excretion. 

The lack of calcium hyperabsorption by the intestine or excessive 

reabsorption by the nephron is indirect evidence that the hypercalcemia 

associated with cancer is a result of stepped-up bone resorption. There is also 

direct evidence. Several studies of bone histology and quantitative bone 

histomorphometry have demonstrated enhanced bone destruction and increased 

bone resorption in MAHC with or without local metastases (25-28). Studies of 

calcium kinetics in hypercalcemic cancer patients (15,19) have also indicated an 

increase in bone resorption. In fact, one careful study of a patient with multiple 

myeloma (19) was able to document a parallel relationship between increased 

serum calcium concentrations and increased bone resorption. Finally, calcitonin 

(29) and mithramycin (30) are two drugs which have been shown to be 

efficacious in treating MAFIC. Since each of these agents inhibits bone resorption 

and since each does so through a separate and distinct mechanism, their dual 

efficacy is strong supporting evidence that increased bone resorption is the 

cornerstone of MAHC. 

LOCAL OSTEOLYTIC HYPERCALCEMIA 

One of the two major pathophysiologic groups of cancers associated with 

hypercalcemia consists of those tumors with extensive skeletal metastases. 

These tumors seem to cause hypercalcemia through the local osteolytic effects 

of the metastatic lesions (8,9). Therefore, this subset of MAHC is referred to as 
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Local Osteolytic Hypercalcemia or LOH (8). Neoplasms included in this group are 

a common source of MAHC, accounting for anywhere from twenty to ninety 

percent of all cases, depending on the study (13,14). Histologically they include 

solid tumors, which are almost exclusively breast carcinomas, and hematologic 

cancers, most often multiple myeloma and less commonly lymphomas and 

lymphosarcomas (8,9,14). Despite their common occurrence, the mechanisms 

responsible for hypercalcemia in these neoplasms are less well defined than the 

mechanisms at play in the second major group, tumors without bone metastases. 

Gutman el. e[.(11) published the first large series of patients with MAHC. Most of 

these patients had either breast cancer or multiple myeloma and they all had 

extensive skeletal tumor burdens. They were patients displaying LOH. Because 

of this universal skeletal involvement, the authors concluded that the 

hypercalcemia was caused by direct destruction of bone by the enlarging 

metastatic lesions. Since this report, it has been recognized that in both 

hematologic tumors (31) and in solid tumors(32) there is some correlation 

between the extent of skeletal tumor involvement and the presence of 

hypercalcemia. For example, it has been observed that patients with breast 

cancer and certain types of lung cancer usually develop hypercalcemia only late 

in their disease, after they have extensive osteolytic bone destruction (32). 

However, it has also become increasingly clear that any correlation between 

skeletal metastases and hypercalcemia is, at best, a rough one. First, not all 

tumors that metastasize to bone cause hypercalcemia. For instance, small cell 

carcinoma is the lung cancer most frequently associated with bone metastases, 

yet it rarely causes hypercalcemia (10). Second, in a study of thirty-three 

myeloma patients (31), Durie el. ei- could not demonstrate a direct positive 

correlation between the degree of bone involvement and the serum calcium 
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concentration. Finally, Ralston £t ai., in a histologically diverse series of 

patients with apparent LOH, actually found an inverse correlation between the 

number of bone metastases and the serum calcium level (33). All of the above 

data suggest that the original notion that metastatic lesions produce 

hypercalcemia purely by destroying bone as they expand is overly simplistic. 

Many investigators now believe that the ability of a metastatic tumor to cause 

LOH is initimately related to its production of local or paracrine factors that 

have the ability to alter normal bone physiology and stimulate bone resorption 

(8). 

The most common mechanisms involved in LOH are those associated with 

solid tumors , and the majority of solid tumors causing LOH are carcinomas of 

the breast (9,13). Breast cancer is a very common form of malignancy in the 

general population and anywhere from sixty to ninety percent of patients with 

advanced disease have skeletal metastases (32,34-36). Thirty percent of all 

breast cancer patients develop hypercalcemia ( 32). As in most MAHC, 

hypercalcemia in breast cancer is caused by increased bone resorption (9,15). 

There is evidence that this may occur on the basis of increased osteoclast 

numbers and activity (25), or that it may occur through the direct resorption of 

bone tissue by malignant cells (28). Galasko and Bennett (26,37) have suggested 

that, in fact, both these mechanisms may play a part. However, they feel that 

osteoclastic bone resorption is quantitatively the more important process. 

It seems likely that osteoclast activation in LOH is mediated by locally 

active, diffusible factors (8). Galasko and Bennett (37) initially suggested that 

this factor(s) might be PGE2. It is known that PGE 2 is a potent stimulator of in 

vitro bone resorption (38), and it has been shown that tumor cells can secrete 

PGE2 (39). Furthermore, co-culture experiments have demonstrated that 
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prostaglandin release by tumor cells in culture has the ability to cause 

resorption in adjacent bone organ cultures (40-42). Another possibility put forth 

by Mundy and Martin (9) is that these local diffusible factors are produced not by 

the tumor, but by lymphocytes and/or monocytes attracted to the metastatic site 

by a cellular immune response induced by the tumor. As will be discussed below, 

activated lymphocytes release lymphokines with potent in vitro bone-resorbing 

activity. Monocytes have been shown both to release prostaglandins (43) and also 

to resorb bone directly (44,45). 

All of the mechanisms mentioned above may play some role in the 

development of hypercalcemia associated with solid tumor skeletal metastases. 

At this time, it is not known which one(s) plays the most important role. A more 

complete understanding awaits further elucidation of both normal bone 

physiology and those alterations occurring in and around metastatic lesions. 

The other group of malignancies associated with LOH is the hematologic 

cancers. In Myers' series on MAHC (13), this group comprised 20% of all 

hypercalcemic cancer patients. Multiple myeloma is the most commonly 

occurring tumor in this group. Most patients with myeloma suffer from 

extensive bone destruction, either in the form of discrete punched-out lesions or 

diffuse osteopenia (9). Twenty to thirty percent of those patients become 

hypercalcemic (46). The mechanism of LOH in multiple myeloma is better 

understood than that associated with solid tumors. It seems to be associated 

with the production of a family of osteoclast activating factors (OAFs) by the 

malignant cells. OAFs are a group of lymphokines that have been shown to cause 

bone resorption in in vitro bioassays (49). 

Histological studies have demonstrated that hypercalcemia in myeloma is 

associated with markedly increased osteoclast numbers and activity (47,48). 
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Since it was known that activated lymphocytes produce bone-resorbing factors 

(49) and since myeloma cells are descended from B lymphocytes, Mundy and his 

associated reasoned that myeloma cells might also produce these bone-resorbing 

factors. They subsequently showed that tissue culture medium conditioned by 

myeloma cell lines, by aspirated bone marrow cells and by bone explants of iliac 

crest, all taken from patients with multiple myeloma,contained bone-resorbing 

factors with chemical and biological characteristics similar to those of OAFs 

(47,50,51). These findings are not restricted to multiple myeloma. OAF-like 

activity has been demonstrated in patients with Burkitt's lymphoma (50), 

lymphosarcoma (52), and a retrovirus associated T-cell lymphoma (53,54). 

Therefore, although there are reports (55,56) of lymphomas that secrete 

1,25(OH)2 Vit. D systemically, it seems likely that most hematologic 

malignancies produce hypercalcemia via the local elaboration of OAFs by 

malignant cells present in the skeleton. Recently, two of these OAFs have been 

identified. Interleukin 1 has been purified from myeloma cell culture medium , 

and identified as the factor responsible for in vitro bone resorbing activity seen 

with such medium (57). Also tumor necrosis factor, another lymphokine 

elaborated by myeloma cells , has been shown to posses in vitro bone-resorbing 

activity (58). 

Biochemically, patients harboring both solid and hematologic tumors 

causing LOH generally have reduced levels of circulating immunoreactive 

parathyroid hormone (iPTH), reduced concentrations of plasma 1,25 (OH^Vit. D, 

normal levels of serum phosphate, and normal or reduced levels of nephrogenous 

cyclic AMP (14). This pattern suggests parathyroid gland suppression, which is 

expected in the face of elevated serum calcium levels. However, it stands in 
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contrast to the findings encountered in the second group of patients, those with 

no skeletal metastases. 

HUMORAL HYPERCALCEMIA OF MALIGNANCY 

The second major pathophysiologic group consists of the squamous, renal, 

urothelial and ovarian tumors which have the ability to cause hypercalcemia 

without metastasizing to the skeleton. These tumors seem to act through a 

humoral mechanism. Hence, this syndrome has become known as the Humoral 

Hypercalcemia of Malignancy or HHM (14). HHM is probably less common than 

LOH, but its exact incidence is unclear. Stewart £i. ai. (14), in a study of fifty 

consecutive patients with MAHC, found that eighty percent of them had HHM. 

However, this study drew heavily from a VA hospital population and had a 

correspondingly low incidence of breast cancer (6%). Bender and Hansen (10) 

studied two hundred consecutive cases of bronchogenic carcinoma and found the 

overall incidence of HHM to be seven percent. This represented fifty-six percent 

of all patients who developed hypercalcemia in that selected population. The 

largest published series on MAHC (430 cases collected over 5 years) found that 

HHM accounted for thirteen percent of all patients with MAHC (13). There are no 

direct observations on the incidence of HHM in the unselected general population. 

Historically, the first reported case of HHM was that of a fifty-seven 

year old man with bronchogenic carcinoma, hypercalcemia, and 

hypophosphatemia. This patient was included in Gutman ai.'s 1936 paper on 

serum calcium values in hyperparathyroidism, Paget's Disease and MAHC (11). 
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This patient had a localized area of Paget's disease in his right femur, but no 

skeletal tumor involvement. The authors concluded: 

It is believed the hypercalcemia in this case was 
not due to the localized and relatively inactive 
Paget's disease but to complicating factors as 
yet wholly obscure. 

The first clue as to the nature of these "obscure complicating factors" came from 

Albright in 1941 (59). He described a patient with a renal carcinoma and a 

solitary metastasis in the right ilium. The patient was hypercalcemic and 

hypophosphatemic, both of which corrected temporarily when the patient's tumor 

was treated with radiation. Combining the observations: 1. that the man was 

hypophosphatemic rather than hyperphosphatemic (the expected result of any 

skeletal destruction by the tumor) and 2. that the hypercalcemia was corrected 

when the tumor was treated, Albright suggested that the hypercalcemia resulted 

from a tumor-derived humoral factor. Specifically, he thought the tumor might 

be producing parathyroid hormone (PTH). 

Following Albright's paper, there were occasional similar case reports 

(60). However, the next milestone in the characterization of HHM as a distinct 

entity came in 1956. Conner, Thomas, and Howard (61) reported two patients 

with hypercalcemia and hypophosphatemia associated with lung cancer. In both 

patients, surgical resection of the tumor brought about the normalization of 

serum calcium and phosphate levels. In one of the patients, tumor recurrence 

four months later was accompanied by the recurrence of the hypercalcemia and 

hypophosphatemia. Both patients were shown to have histological evidence of 

excessive bone resorption in sites uninvolved by tumor. Later that same year, 

Plimpton and Gellhorn reported similar results (20). They described ten patients 
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who also had hypercalcemia and hypophosphatemia in association with various 

malignancies. None of the ten had skeletal tumor involvement as assessed by 

roentgenographic survey and/or autopsy observations, and all had normal 

parathyroid glands as assessed by neck exploration and/or autopsy examination. 

Three of the ten patients underwent resection of their cancer which resulted in 

prolonged normalization of serum calcium and phosphorus values. One of these 

three suffered a recurrence and subsequently experienced a return of her 

hypercalcemia. Taken together, these two papers documented a direct link 

between the presence of hypercalcemia and the extra-skeletal primary tumor in 

the patients studied. Both sets of authors concluded that there exists a subset 

of patients with MAHC in whom excessive bone resorption is caused by a humoral 

mechanism, and not by local osteolytic events. 

The humoral syndrome, which became known as "ectopic 

hyperparathyroidism" or "pseudohyperparathyroidism" (62,63) was considered a 

rare entity until Lafferty published the first large series of patients in 1966 

(12). The author defined pseudohyperparathyroidism as the the occurence of 

hypercalcemia accompanied by hypophosphatemia associated with a malignancy 

having no skeletal metastases. He described sixty-seven such patients, fifty 

collected from the literature and seventeen previously unpublished cases from 

the University Hospitals of Cleveland. The paper made several important 

observations. First, the author observed that this was not a rare entity. In fact, 

it was the third most common cause of hypercalcemia at the University Hospitals 

of Cleveland. Second, he defined the histological group of neoplasms (described 

earlier) with which the syndrome occurrred. Third, by documenting the reversal 

of hypercalcemia with surgical resection in twenty patients, he reaffirmed the 

earlier data (20,61) demonstrating the presence of a humoral mechanism. Last, 
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he observed that the combination of hypercalcemia and hypophosphatemia was 

not unlike that seen in patients with primary hyperparathyroidism. As suggested 

earlier by Albright (59), Lafferty argued for the production of ectopic PTH as the 

pathogenetic mechanism. 

Lafferty's paper provided an impetus that began an earnest search for the 

humoral factor or factors causing HHM. This quest has come to dominate the 

literature on the topic. Since 1966, advances in technology have also allowed a 

more complete description of both the biochemical profile and the process of 

bone resorption associated with the syndrome. It is worthwhile examining both 

of these before discussing the proposed pathogenetic factors. 

Perhaps the most definitive biochemical characterization of HHM came 

from Stewart el. al. in 1980 (14). The investigators studied fifty consecutive 

patients with MAHC. They compared serum calcium levels, serum phosphorus 

levels, nephrogenous cyclic AMP (NcAMP) excretion, tubular phosphorus 

thresholds, fasting calcium excretion and plasma 1,25 (OH)2Vit. D concetrations 

in patients with HHM to those encountered in normocalcemic cancer patients, 

patients with primary hyperparathyroidism (HPT) and patients with LOH. They 

found a similar degree of hypercalcemia in patients with HHM, HPT, and LOH. 

Serum phosphorus levels were low to low normal in patients with HHM and HPT, 

but were normal in patients with LOH. Likewise, the renal phosphorus threshold 

was depressed in patients with HHM and HPT and within normal limits in patients 

with LOH. Fasting calcium excretion was elevated in patients with HHM and in 

those with LOH. Both groups had markedly higher values than patients with HPT 

or normocalcemic cancer patients. Patients with HHM and LOH had depressed 

concentrations of plasma 1,25(OH)2 Vit. D, whereas normocalcemic cancer 

patients had normal values and patients with HPT had elevated values. Finally, 
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the most striking finding was the very high levels of NcAMP in patients with 

HHM. These values averaged fifty percent higher than those seen in patients with 

HPT,whose values were moderately elevated over those of normocalcemic 

patients. In distinct contrast, patients with LOH had depressed levels of NcAMP. 

The above information was valuable in three respects. First, it painted a 

biochemical profile of the HHM syndrome, permitting its clinical differentiation 

from HPT and LOH. Second, it described the biological effects of the putative 

humoral factor. This factor increases serum calcium, tends to decrease serum 

phosphorus, decreases renal reabsorption of both calcium and phosphorus, lowers 

serum 1,25(OH)2 Vit. D levels and stimulates production of NcAMP. Third, it 

provided a biochemical test, NcAMP, that seems to be a marker for HHM. Elevated 

NcAMP values correlate strongly with the histological tumor types associated 

with HHM as previously described by Lafferty (12) and others (13,15,20,24). 

As in LOH, hypercalcemia in HHM is ultimately caused by increased bone 

resorption. Evidence from both human (25) and animal studies (21,22) has shown 

that this occurs as a result of an uncoupling of osteoblast and osteoclast 

activity. Normally, the activities of osteoblasts and osteoclasts are tightly 

coordinated so that, despite the continuous and extensive flux of calcium ion 

between the skeleton and the extracellular fluid, there is no net change in the 

overall calcium content of either one (5). Likewise, in several metabolic bone 

diseases such as HPT, secondary hyperparathyroidism associated with renal 

failure, and Paget's disease, there is increased bone turnover, but both osteoblast 

and osteoclast activity increase in a coupled fashion. The balance between the 

two processes is maintained (25,64). In contrast, in HHM the balance is 

disrupted. Stewart gt a!. (25) performed detailed histological and quantitative 

histomorphometric studies of seven patients with HHM. They found markedly 
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stimulated osteoclast function, as evidenced by an increased osteoclast surface, 

in the face of markedly depressed osteoblast function, as evidenced by a reduced 

osteoblast surface, osteoid surface, and osteoid volume. Hence, it seems that 

the humoral factor causing HHM is able to uncouple the normal concert between 

those two bone cells, increasing osteoclastic bone resorption and decreasing 

osteoblastic bone formation. 

The identity of the factor responsible for HHM has sparked much interest. 

Early reports on HHM (12,59-63) all stressed the biochemical constellation of 

hypercalcemia and hypophosphatemia. Since these were known effects of 

parathyroid hormone,Albright (59) and later Lafferty (12) invoked the idea of 

ectopic PTH production in the tumors as the mechanism for HHM. This concept 

persisted for some forty years, but it is now well established that native PTH is 

not the responsible factor. There are three lines of evidence that support this 

conclusion. First, when the syndrome was more fully characterized 

biochemically (14), it became obvious that although the clinical syndrome shares 

some features of HPT, it is not associated with the full range of PTH target 

organ responses. The factor responsible for HHM mirrors the actions of PTH in 

causing bone resorption, renal phosphate wasting , and generation of NcAMP (14). 

However, it lacks the ability to stimulate the conversion of 25-hydroxy-vitamin 

D to 1,25 dihydroxy-vitamin D and it lacks the ability to stimulate distal tubular 

calcium reabsorption (14). 

The second line of evidence against PTH being the HHM factor comes from 

immunoassay data. Tashjian, Levine, and Munson first reported the presence of 

immunoassayable PTH (iPTH) in extracts of six tumors associated with HHM in 

1964 (65). Using a quantitative complement fixation assay, Lafferty (12) 

detected iPTH in an additional 4 cases of HHM. With the advent of 
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radioimmunoassays (RIA's) for PTH, there were many studies performed that 

looked for the presence of iPTH in the plasma of patients with HHM (24,66-72). 

Several of these reports are instructive. Using an RIA system that was specific 

for the C-terminal region of porcine PTH and which displaced 131 l-labelled 

bovine-PTH, Benson gtal. (69) reported the presence of iPTH in the serum of 95% 

of 108 unselected patients with HHM (the majority of whom, 60, had HHM). Five 

of these patients had elevated iPTH values, while the rest had iPTH 

concentrations in the normal range. The authors argued that in the face of 

hypercalcemia iPTH values should be suppressed, so that values within the 

"normal range" actually represented an elevation. Powell el. ai- (68) and Stewart 

eta!- (14) used multiple RIA's with several different antisera directed at regions 

spanning the entire length of the PTH molecule, including biologically active and 

inactive native PTH and PTH fragments. Powell and associates were unable to 

detect iPTH in any of the eleven patients they studied. Stewart £t al- found low- 

normal to undetectable mean iPTH levels in their HHM population. 

Conflicting results such as this led to some argument (69) and a great 

deal of speculation about the nature of the PTH secreted by the tumors (71) or 

whether the tumors secreted PTH at all (68). Despite the confusion, two facts 

became established. First, results varied with different immunoassay systems 

(5,68,69). Antibodies with specificity for different parts of the PTH molecule 

seemed to give different results. Second, when iPTH was detected, it was noted 

that the serum levels did not vary with serum calcium concentrations as would 

have been expected. Serum iPTH was consistently lower in patients with HHM 

than it was in patients with HPT (67,69), and although there was a correlation 

between increasing calcium levels and increasing iPTH levels in HPT, no such 

correlation was evident in HHM. 
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These data became more fully interpretable only with the addition of 

several observations on the nature of native PTH secretion. First, it became 

evident that serum iPTH is a heterogeneous mixture of both biologically active 

and inactive fragments (71,73-79). Second, it was noted that there is a 

nonsuppressible component of iPTH secretion that operates even in the face of 

hypercalcemia (80). Third, it was discovered that hypercalcemia changes the 

composition of the circulating iPTH in serum. It increases the proportion of 

biologically inactive C-terminus PTH fragments and it decreases the proportion 

of biologically active N-terminus fragments (81,82). These facts suggest an 

explanation for the disagreement between the studies. By virtue of its low 

concentration and its lack of correlation with serum calcium levels, the iPTH 

measured in the patients with HHM most likely represents the nonsuppressible 

segment of PTH secretion and the accumulation in plasma of biologically inactive 

C-terminus fragments. The variation seen with different assays was probably 

based on whether or not they could recognize these biologically inactive 

fragments. Benson al. (69) unknowingly anticipated this conclusion. They 

pointed out that their high incidence of detecting iPTH relied on their use of a 

more "sensitive" RIA employing specificity for the C-terminal end of PTH. 

Further support for this interpretation also comes from Broadus and Stewart (5) 

and Mallette el. al. (83). Both sets of investigators have recently measured serum 

iPTH in patients with HHM using a sensitive PTH-RIA with mid-region and C- 

terminus specificity. Both studies found low concentrations of iPTH that did not 

correlate with serum calcium concentrations but did correlate with serum 

creatinine concentrations. This suggests that any iPTH detected in patients with 

HHM can be explained by retained C-terminal PTH fragments which accumulate 

following the development of azotemia (84). 
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The last and most powerful piece of evidence arguing against PTH as the 

humoral factor in HHM comes from mRNA hybridization data. Simpson et al. (85) 

used radiolabelled PTH cDNAto probe Northern blots of mRNA extracted from 

five human tumors and three animal tumors associated with HHM. The authors 

claimed that they could detect PTH mRNA in as little as 100 ug of control 

parathyroid tissue using their hybridization scheme. However, they were unable 

to detect PTH mRNA in as much as 100 mg of tissue from any of the HHM tumors. 

Therefore, since the probe used in this study contained the coding and flanking 

sequences for PTH, it is very unlikely that the factor responsible for HHM shares 

a significant portion of its primary amino acid sequence with PTH or that the 

HHM-factor is a product of the PTH gene. These results have recently been 

duplicated by Insogna £t al in a Leydig cell tumor rat model of HHM (22). 

It is evident that HHM is not caused by the ectopic production of PTH. The 

exact nature of the factor causing this syndrome is not known at present. The 

leading contenders are prostaglandins, transforming growth factors, and 

peptide(s) structurally dissimilar to PTH, yet able to stimulate certain PTH 

receptors. The evidence for each of these possibilities will be discussed 

separately below. 

Prostaglandins 

Prostaglandins were first shown to resorb bone in 1970 by Klein and 

Raisz (40). Using a fetal rat long bone assay (86), these investigators showed 

that prostaglandins of the E series had potent in vitro bone-resorbing activity, 

similar to that of PTH. This observation prompted speculation that 
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prostaglandins might play a role in HHM. It is now established that PGE2 is an 

important humoral factor in two animal models of HHM. 

Work by Tashjian and his group has implicated PGE2 as the humoral 

mediator of hypercalcemia in the mouse HSDM 1 fibrosarcoma and in the rabbit 

VX2 carcinoma. The HSDMi fibrosarcoma is a transplantable tumor that neither 

metastasizes to bone nor locally invades bone, but causes hypercalclemia (8,87). 

The hypercalclemia is reversible with surgical resection of the tumor, indicating 

a humoral mechanism. Mice bearing this tumor have elevated plasma levels of 

PGE2 and its longer-lived metabolite 13,14 dihydro-15-keto-PGE2 (88-90). It 

has been shown that HSDMi cells produce large quantities of PGE2 (88) and that 

tumor extracts as well as tumor-conditioned medium contains bone-resorbing 

activity that can be accounted for quantitatively by the PGE2 content of the 

tumor or medium (88,91). Finally, indomethacin, 5,8,11,14-eicosatetraynoic 

acid, and hydrocortisone, all powerful inhibitors of PGE2 synthesis in HSDMi 

cells, have been shown: 1. to lower plasma concentrations of PGE2, its 

metabolites, and serum calcium and 2. to decrease in parallel the PGE2 content 

and the bone-resorbing activity of these tumors (88-92). 

The VX2 carcinoma, also a transplantable tumor, causes hypercalcemia in 

rabbits. This tumor does not metastasize to bone, but it produces a bone- 

resorbing factor that causes histomorphometric changes reminiscent of human 

HHM (91,93). Rabbits harboring this tumor show elevated levels of PGE 2 and its 

metabolite 13,14-dihydro-15-keto PGE2 in both plasma and venous drainage of 

the tumor (94-96). Tashjian et. al. have reported that indomethacin and 

hydrocortisone prevent the rise in plasma levels of both compounds and reduce 

the levels of PGE2 and bone-resorbing activity present in tumor extracts or VX2 

cell culture medium (91,94,95). Furthermore, they claim that continuous 
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treatment of the rabbits with indomethacin from the time of tumor 

transplantation prevents the development of hypercalcemia (91,94). Recently, 

Doppelt ai. (97) have called these results into question. In sharp contrast to 

the above results, they observed that on a normal calcium diet, oral indomethacin 

treatment neither prevented the development of hypercalcemia nor did it lower 

the serum calcium level once hypercalcemia was present. Also, the investigators 

were not able to prevent the development of hypercalcemia with 

dichloromethylene diphosphonate, a potent inhibitor of bone resorption. The only 

way they were able to reverse the hypercalcemia was to feed the rabbits a 

calcium-free diet. Hence, despite Tashjian et al's findings, the mechanisms of 

hypercalcemia in this model are not fully understood. It is likely that intestinal 

calcium hyperabsorption is the major pathophysiologic feature of the syndrome 

in these animals. 

Despite the compelling evidence for a causitive role in the HDSM -j 

fibrosarcoma and the suggestion of a contributing role in the VX2 rabbits, 

prostaglandins seem to have little if any role as humoral mediators of 

hypercalcemia in humans (8,9). These compounds were originally proposed to be 

mediators of HHM in humans based on two facts. It was known that many human 

tumors produce prostaglandins, PGE2 in particular (41). Also, there were several 

early case reports claiming a correlation between hypercalcemia and elevated 

plasma PGE2 levels in patients with renal carcinomas (98,99). Seyberth et al. 

(100) furthered this speculation when they reported elevated levels of 7 a- 

hydroxy-5,11 diketotetranorprostane-1,16 dioic acid (PGE-M), the major urinary 

metabolity of PGE2> in twelve of fourteen patients with MAHC. However, seven 

of fifteen normocalcemic patients with solid tumors also had elevated levels, 

calling into question the specificity of these findings with regard to 
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hypercalcemia. Further experience (101-103) has shown that tumor production 

of prostaglandins does not correlate well with calcium levels and that 

circulating levels of PGE2 and/or its metabolites are too low to account for the 

level of bone resorption necessary to cause hypercalcemia. Finally, despite a 

few reported successes (103,104), prostaglandin synthesis inhibitors such as 

indomethacin have not been efficacious in treating MAHC (9). The evidence now 

suggests that prostaglandins may play a greater role in controlling some local 

aspects of bone formation or resorption. For example, Minkin si. al. have 

demonstrated that prostaglandin synthesis inhibitors can suppress the in vitro 

bone resorption caused by systemic factors released by tumors (105). However, 

the data clearly shows that prostaglandins have no general role as the systemic, 

humoral bone-resorbing factor causing HHM. 

Transforming Growth Factors 

In recent years Mundy and his colleagues have proposed the transforming 

growth factors (TGFs) as possible etiologic agents responsible for HHM. This 

proposal is based on two observations. First, Tashjian and Levine (106), using 

the mouse calvarium assay and Raisz £l. a!- (107), using the fetal rat long-bone 

assay have demonstrated that epidermal growth factor (EGF) is a potent 

stimulator of bone resorption in vitro. Second, there is evidence that many 

human tumors produce TGFs, a family of factors that share biological activities 

with EGF, including the ability to interact directly with the EGF receptor 

(48,108-110). Briefly, the characteristics of TGFs include the ability to 

stimulate cell growth and replication (mitogenesis) and the ability to 

"transform" normal cell lines (111). "Transformation" is defined as the loss of 
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density-dependent growth inhibition and development of anchorage-independent 

growth, detected by the ability to form colonies in soft agar (112). TGF- a's are 

those which can compete with EGF for binding to its receptor and can 

independently stimulate anchorage-independent cell growth (113). TGF-B's, on 

the other hand, require the presence of EGF to stimulate anchorage-independent 

growth, and they do not compete with EGF for receptor binding (113). Mundy and 

his group have presented evidence suggesting pathogenetic roles for both TGF-a 

andTGF-B in HHM. 

The evidence concerning TGF-a comes from work done with a Leydig cell 

tumor. This tumor causes hypercalcemia in rats and has been shown to be a 

reliable model for HHM (8). Ibbotson £i. ai- (114) reported that both tumor 

extracts and conditioned medium from tumor cell cultures contain a bone- 

resorbing factor that shares certain physical characteristics with TGFs. It is 

acid stable, sensitive to reducing agents and sensitive to trypsin. They were 

able to demonstrate co-elution of bone-resorbing activity, mitogenic activity, 

and soft agar colony-stimulating activity on gel filtration chromatography of 

tumor extracts and tumor conditioned medium. The gel-filtration fractions 

containing bone-resorbing activity also contained a factor which is able to 

compete with labelled EGF for binding to the EGF receptor. Further studies have 

demonstrated that the addition of EGF receptor antiserum to the fetal rat bone 

resorption assay inhibits the resorption usually seen with tumor conditioned 

medium and with EGF, but not that seen with PTH (115). This suggests that bone 

resorption in the rat Leydig cell tumor model may involve the EGF receptor, 

supporting the possibility of an etiologic role for TGF-a . 

The evidence concerning TGF-B comes from the hypercalcemic variant of 

the Walker Rat Carcinosarcoma,also shown to be a valid model of HHM (8). As in 
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the Leydig cell model, D'Souza £i. ai. found that the bone-resorbing activity 

present in tumor extracts and tumor-conditioned medium shares certain physical 

characteristics with TGF,including stability to acid and heat and sensitivity to 

the reducing agent, dithiothreatol (DTT) (116). They also demonstrated the co¬ 

elution of bone-resorbing and soft agar-stimulating activities on gel filtration 

chromatography (116). However, the TGF activity is different in this model in 

two respects. It does not seem to inhibit labelled EGF from binding to its 

receptor and it requires the presence of EGF to cause cell transformation. These 

observations form the basis for the authors' suggestion that the activity is a 

TGF-3. 

Evidence for the role of TGFs in human HHM is limited to experience with 

two tumors, a renal cell carcinoma and a squamous cell lung carcinoma. In both 

of these tumors, bone-resorbing activity has been shown to have the previously 

mentioned physical characteristics, stability in acid, sensitivity to DTT, and 

sensitivity to trypsin, which are also seen TGFs (117,118). Furthermore, Jacobs 

St ai. have reported that an mRNA isolated from the renal cell tumor and injected 

into a xenopus ooctye protein translation system stimulates the production of a 

factor or factors that binds to the EGF receptor (118). 

It is impossible to prove categorically whether or not the bone-resorbing 

and the TGF activities described in these studies are one and the same until 

these activities are purified to homogeneity. The attempt to accomplish this 

purification is currently in progress. When and if it is susccessful, it will allow 

the elucidation of any connections between the bone-resorbing activity, the 

growth factor activity, and the adenylate cyclase activity (to be discussed next) 

associated with HHM. 
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PTH-like Peptides or Adenvlate-Cvclase Stimulating Factor(s) 

There is growing evidence that tumors associated with HHM produce a 

peptide or peptides able to specifically interact with selected parathyroid 

hormone receptors. As reviewed earlier, the evidence against PTH as the 

pathophysiologic culprit in HHM is strong. Also the preliminary molecular 

biology data (22,85) makes it unlikely that the HHM factor(s) (HHM-F) physically 

resembles PTH, at least with respect to its primary protein structure. However, 

its ability to resorb bone (25) and to stimulate the proximal renal tubular 

adenylate cyclase system (14) suggests that HHM-F must share some effector 

mechanisms with PTH. Further support for this notion is supplied by Goltzman 

and Stewart (119,120), who have demonstrated a third bioactivity held in 

common between PTH and HHM, one which is not directly related to the clinical 

syndrome. They showed that serum from patients with HHM contained a factor 

which could stimulate the PTH-sensitive proximal tubular glucose-6 -phosphate 

dehydrogenase complex in an in vitro cytochemical assay. 

Much of the evidence for the existence of biologically active PTH-like 

peptides in patients with HHM rests on the observation that these patients have 

elevated levels of NcAMP. It is assumed that these elevated levels result from 

the ability of HHM-F to stimulate the PTH mediated proximal renal tubular 

adenylate cyclase system. It is helpful to look more closely at this observation 

and this assumption. Fifty to sixty percent of the total urinary cAMP content is 

derived from the renal excretion of plasma cAMP (121,122). The remainder is 

produced by the kidney, largely in response to circulating PTH, which acts at the 

proximal tubular adenylate cyclase system (122). Broadus £l. &[. have shown that 

the renally produced PTH-sensitive element of urinary cAMP can be quantified by 
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expressing total urinary cAMP as a function of the glomerular filtration rate and 

by subtracting the filtered load of cAMP (123) . This expression, known as 

NcAMP or nephrogenous cyclic-AMP, correlates well with iPTH levels, and its 

elevation has become a marker for elevated levels of circulating PTH. Several 

groups have investigated the levels of NcAMP associated with HHM. KukrejafiJ. si- 

(124) found elevated NcAMP levels, yet normal iPTH levels, in patients with lung 

cancer. Rude si. si- (121) reported increased NcAMP levels in a series of patients 

with MAHC as compared to normocalcemic cancer patients. They found that these 

elevations were most likely to be found in patients with squamous tumors or 

renal cell carcinomas (121). Finally Stewart (14) observed a clear 

dichotomy between elevated NcAMP levels (similar to patients with HPT) in 

patients with HHM and depressed levels in patients with LOH. The findings were 

so striking that the authors argued for a redefinition of the syndrome of HHM 

based on NcAMP. They suggested that those patients with tumors of expected 

histology and with elevated NcAMP levels be classified in the HHM group even 

though they might have limited skeletal metastases. 

After having established elevated NcAMP as a reliable marker, 

investigators began looking for an adenylate cyclase stimulating factor(s) 

(ACSF) in extracts of tumors associated with HHM. Stewart el. ai. first 

accomplished this in 1983 (120). These investigators employed two in vitro 

systems to probe for PTH-like activity: 1. a canine renal cortical membrane 

adenylate cyclase assay measuring proximal tubular adenylate cyclase 

stimulating activity (ACSA) and 2. the PTH cytochemical bioassay mentioned 

above, which measures PTH-sensitive renal tubular G-6-PD stimulating activity. 

They demonstrated dose-dependent ACSA and G-6-PD-stimulating activity in 

four of five tumor HHM extracts tested. Control extracts from tumors of nine 
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normocalcemic cancer patients and one patient with LOH showed either the 

absence of such activity or only marginal ACSA (3 patients). PTH-like 

bioactivity was abolished in both assays in a dose-dependent fashion by the 

addition to the assay of [Nle 8-18’ Tyr 34] bPTH (3-34) amide, a synthetic 

analogue and specific PTH receptor antagonist (120). This observation strongly 

suggests that some factor in the extracts was specifically interacting with PTH 

receptors. However, preincubation of the tumor extracts with PTH antiserum did 

not alter the bioactivity seen in either assay system, confirming that the 

stimulation is not due to PTH. Finally, the investigators also demonstrated that 

the PTH-like bioactivity eluted from gel filtration columns at an apparent 

molecular weight of 28,000 daltons, a molecular weight much larger than that of 

PTH 

Since this initial report, tumors from many more patients have been 

examined for the presence of ACSA. In a recent publication of their laboratory's 

aggragate experience (125), Stewart si- ai. reported the presence of dose- 

dependent renal cortical ACSA in eighteen of twenty tumors associated with 

HHM. In contrast only four of thirty-seven control tumors (20 tumors from 

normocalcemic patients, 7 tumors associated with LOH, 10 nonmalignant tissue 

samples) were reported to contain any detectable ACSA. In addition, extracts 

from many of these tumors as well as conditioned medium from cultured tumor 

lines associated with HHM, have been shown to stimulate PTH-sensitive 

adenylate cyclase production in clonal osteosarcoma cells (125,126). As in the 

renal cortical membrane assay, this cAMP production is inhibitable by the PTH 

receptor antagonist [Nle 8-18, Tyr 34] bPTH (3-34) amide (126). 

Investigators in another laboratory have confirmed the pesence of ACSA 

in tumors associated with HHM (127). Strewler and his associates have 
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transplanted a cultured human renal cell carcinoma line into nude mice. The mice 

develop HHM, and conditioned medium for the cell cultures contains ACSA as 

determined in the renal cortical membrane assay. This ACSA is dose-dependent 

and inhibitable with the PTH antagonist mentioned previously. Final support 

comes from animal data. ACSA has been demonstrated in the following models of 

HHM: a carcinogen induced mouse squamous tumor (21), the Walker rat 

carcinosarcoma 256 (126), the H-500 rat Leydig cell tumor (126,128), and a 

naturally occurring canine lymphosarcoma (129). 

As established before, HHM is ultimately caused by increased bone 

resorption (25). The above data is strong circumstantial evidence that this ACSA 

is associated with HHM. However, to implicate it as the causative factor(s) 

necessitates showing that it also has bone-resorbing activity. Several groups 

have recently accomplished this. Klein £l. a[. have shown that conditioned 

medium from a human renal cell tumor line causes bone resorption in the fetal 

rat long bone assay (130). Furthermore, both Klein £i. al- (130) and Stewart at al- 

(125) have demonstrated co-purification of ACSA and bone-resorbing activity in 

initial partial purification schemes. Klein al. al- observed co-elution of these 

activities from a gel filtration column, which achieved a 20-fold purification of 

the ACSA. Stewart al-_2l- have purified the ACSA from tumor extracts much 

further (some 4800-fold) using reverse phase HPLC and have still obseved potent 

bone-resorbing activity associated with the ACSA. Similar observations have 

been made in two of the animal tumor models of HHM shown to possess ACSA. 

Conditioned medium from the Walker rat 256 carcinosarcoma has been shown to 

possess bone-resorbing activity (126), and both bone-resorbing activity and 

ACSA have been shown to co-migrate on gel filtration of conditioned medium 

from Rice H-500 rat Leydig cell tumor lines (128). 
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As with the TGF activity, until the ACSA in purified to homogeneity, it 

will be impossible to ascertain whether the cAMP-generating activity and the 

bone-resorbing activity reside in the same molecule. However, the data gathered 

thus far seem to anticipate this result. 

Final support for the involvement of an adenylate cyclase-stimulating 

factor(s) in HHM comes from recent work by Merendino and Stewart. Since many 

tumors causing HHM are of squamous epithelial origins (14), these investigators 

tested for the presence of ACSA in culture medium from non-malignant human 

keratinocytes. They demonstrated that,indeed, these cells produced a factor or 

factors with dose-dependant ACSA in the rat osteosarcoma cell assay (132). 

Furthermore, this activity is inhibitable by the PTH receptor antagonist, [Nle 

8,18,Tyr34] bPTH (3-34) amide, in a fashion similar to the ACSA associated with 

HHM tumor lines. Subsequent experiments have shown that this factor or factors 

also possesses bone-resorbing activity in the fetal rat long bone assay (Stewart, 

unpublished observations). Currently, it is not known whether it is by chance or 

by design that a normal keratinocyte product has the ability to interact with PTH 

receptors and to cause bone resorption. However, it suggests that the non- 

regulated production of such a factor(s) by malignant squamous epithelial cells 

and its release into the general circulation may be a pathogenetic event in HHM. 

Partial purification of this ACSA has allowed the elucidation of several 

of its physical characteristics. First, it is a protein. Several studies have 

shown the loss of ACSA and bone-resorbing activity when samples were treated 

with trypsin (125-128,130). Gel filtration chromatography suggests that it has 

an apparent molecular weight of approximately 30,000 daltons (21,22,130,131). 

However, based on SDS PAGE results, a molecular weight of 15,000 seems more 

likely (Burtis W and Stewart A, unpublished observations). Finally, the protein, 
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at least in its partially purified form, has been shown to be stable under 

conditions of dilute acid, freezing and thawing, lyophilization, and boiling at 

100°C for up to fifteen minutes (120) 

It was in the setting of attempts to isolate and purify the ACSF discussed 

above that the studies to be described shortly were undertaken. They are a 

series of experiments exploring different physical characteristics of partially 

purified ACSF. The behavior of ACSF was examined under oxidizing and reducing 

conditions, and at different pH's. It was subjected to cyanogen bromide digestion 

in an attempt to generate an active fragment. Finally, the possibility that it 

might be a glycoprotein was explored. The goals of these experiments were 

three-fold: 1. to characterize the molecule(s) more fully, 2. to provide guidelines 

on handling the increasingly pure protein, and 3. to compare its physical 

characteristics to those reported for the TGF activity associated with HHM. 
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Adenylate Cvclase Assay 

PTH-like activity was measured using a modified version of the canine 

renal cortical membrane adenylate cyclase assay described by Nissenson et- si- 

(133). The assay measures the conversion of 32P-ATP to 32P-cAMP triggered by 

the stimulation of a PTH receptor-mediated adenylate cyclase system contained 

in a renal membrane preparation. Purified renal cortical membranes were 

prepared as follows. Cortical tissue was dissected from a freshly removed 

canine kidney and homogenized. Membranes were separated from other cellular 

elements by sucrose density centrifugations, after which they were resuspended 

in 0.25 M sucrose, 10mM EDTA and 5.0 mM Tris-HCI, pH 7.5 at a protein 

concentration of 3.2 mg/ml. The membranes were stored in aliquots at -80 °C 

until used in the assay. 

The reaction mixture or "cocktail" consists of 60 microliters per tube of 

50 mM Tris-Hcl (pH 7.4), 5 mM Mg Cl2, 10 mM KCI, 1 mg/ml BSA, 1 mM EGTA, 2 

mM DTT, 0.11 pg/ml creatine kinase, 5 mM creatine phosphate, 1 mM unlabelled 

cAMP, 10 pM 5' guanylyl imidodiphosphate, 6 pg canine renal cortical membrane 

protein and approximately 500,000 cpm 32P-ATP. The creatine phosphate and 

creatine kinase constitute an ATP regeneration system, and the unlabelled cAMP 

is added to retard degradation of the newly formed 32P-cAMP by 

phosphodiesterase. 5' guanylyl imidodiphosphate is a hydrolysis-resistant GTP 

analogue which has been shown to increase greatly the sensitivity of adenylate 

cyclase to PTH (134,135). The reactions were initiated by addition of 10 
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microliters of bPTH (1-34) [Beckman Bioproducts, Palo Alto, CA] as a standard, 

10 microliters of 5 mM acetic acid/ 0.5 mg/ml BSA (HAc/BSA) as a basal, or 10 

microliters of experimental sample, all added at 0°C. The reactions were 

allowed to proceed at 30°C for 30 minutes and were then terminated with the 

addition, at 0°C, of 100 microliters of 2 mM ATP, 0.5 mM cAMP, and 10,000 cpm 

3HcAMP as a recovery standard. Reaction tubes were then boiled for 3 minutes at 

100°C, diluted with 800 microliters of water and centrifuged at 3000 X g for 10 

minutes. 

32P-cAMP generated in the reactions was separated from unused 32P-ATP 

using the chromatographic method of Salomon al. (136). The reaction mixture 

(1 ml.) was applied to Dowex AG 50 W-X4 (200-400 mesh) cation exchange 

columns and eluted with water onto Alumina columns. The cAMP was then eluted 

from the alumina with 5 mis. of 0.1 M Imidazole and collected in scintillation 

vials containing 15 mis of Optiflour liquid scintillation fluid (Packard). 

Radioactivity was measured with a dual isotope 3H/32P program and all values 

were corrected for 3H cAMP recovery. Results are expressed as the percentage 

increment of 32P counts over basal activity. 

Source of ACSF 

The adenylate cyclase stimulating factor(s) or ACSF used in these 

experiments was extracted from a breast carcinoma. The patient was defined as 

having HHM by virtue of an elevated serum calcium (12.9 mg%, nl. 9.5-10.6), 

absence of any skeletal metastases on bone scan or at autopsy, elevated 

nephrogenous cAMP (4.66 nmol/dl GF, nl .5-2.5) and normal commerical 



www.manaraa.com



www.manaraa.com

31 

immunoreactive PTH and plasma 1,25(OH)2 vitamin D levels. Four and one half 

grams of tumor tissue obtained at autopsy was subjected to a three step 

purification scheme. First, it was extracted with acid/urea as previously 

reported (120). Briefly, tissue was homogenized in a Waring blender in 0.1 M Tris 

HCI, pH 7.4 at 0°C and then centrifuged for 15 minutes at 27,000 X g. The pellet 

was then extracted in 8 M urea, 0.2 M HCI and 0.1 M cysteine for 1 hour. The 

resulting extract was centrifuged for 15 minutes at 27,000 X g and the 

supernatant was dialyzed against 12 liters of water over 24 hours. The 

dialysate was subsequently divided into aliquots and lyophilized. The second 

step was an ethanol-sodium chloride extraction (125). The lyophilized acid/urea 

extract was resuspended in 10 mM acetic acid containing 100 mM NaCI. Ice cold 

ethanol was added to a final concentration of 20% (vol:vol). This mixture was 

kept on ice for 15 minutes, being occasionally vortexed, and was then 

centrifuged at 16,000 X g for 15 minutes. The supernatant was removed, frozen 

on dry ice, and lyophilized. The third and final step in the partial purification 

consisted of reverse phase HPLC. Samples of the ethanol-NaCI extract were 

suspended in 0.1% trifluoroacetic acid and were applied to a Vydac Cie reverse 

phase column (Separation group, Hesperia, CA). Using a Waters Associates 

(Milford, MA) mode! 680 controller, U6-K injector, two 510 pumps and a 440 

detector, the column was exposed to a gradient of acetonitrile in 0.1% 

trifluoroacetic acid at a flow rate of 1.0 ml per minute. The partially purified 

ACSF represents five pooled 2-ml fractions collected from 30% to 36% 

acetonitrile. These fractions corresponded to the only HPLC fractions with 

significant cyclase stimulating and bone resorbing activity (125). The pooled 

fractions were divided into 20 microliter aliquots, frozen on dry ice, lyophilized, 

and stored at -70°C until used in experiments. These pooled HPLC fractions were 
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shown to have a specific activity of 12,000 nanogram equivalents (ng.eq.) of 

bPTH (l-34)/ml in the renal adenylate cyclase assay. This represents 

approximately a 4800-fold purification over the crude acid/urea extracts 

described previously (120,125,137). 

Oxidation and Reduction Experiments 

Bovine-PTH(l-34) and partially purified ACSF were oxidized with 

hydrogen peroxide for varying lengths of time. Sample was combined with 

hydrogen peroxide at final concentrations of 200 ng/ml of PTH (1-34) or 2.4 

ng.eq./ml ACSF and 0.044 M H2O2, respectively. Reactions were allowed to 

proceed at 25°C for thirty minutes, one, two, or three hours and were terminated 

by freezing on dry ice, and lyophilizing. The samples were resuspended at their 

initial concentrations in HAc/BSA after which they were assayed for cAMP 

generating activity. 

PTH (1-34) and partially purified ACSF were exposed to three different 

reducing agents: B-mercaptoethanol (B-ME), Dithiothreitol (DTT), and L-cysteine. 

Samples were mixed with reducing agents at final concentrations of 200 ng/ml 

PTH (1-34) or 2.4 ng.eq.PTH/ml of ACSF and 300 mM B-ME, 65 mM DTT, or 130 mM 

L-cysteine. The reaction was carried out at 25°C for 17 hours, after which time 

the samples were placed at 0°C and assayed in the renal cAMP assay. 

Partially purified ACSF was also sequentially oxidized and reduced. 

Samples of HHM-F were exposed to 0.044 M H 2O2 for three hours at 25°C, frozen 

on dry ice and lyophilized as described above. Samples were then resuspended in 

HAc/BSA and then mixed with reducing agents to give final concentrations of 300 
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mM BME, 65 mM DTT, or 130 mM L-cysteine and 2.4 ng.eq. PTH/ml of ACSF. These 

reaction mixtures were incubated at 25°C for 20 hours and then assayed for 

cAMP generating activity in the renal adenylate cyclase assay. 

pH Experiments 

PTH and partially purified ACSF were exposed to various pH's ranging from 

3 to 10 in an ammonium acetate buffer system. Ammonium acetate was chosen 

for its volatility. Aliquots of either ACSF or PTH in HAc/BSA were lyophilized 

and then resuspended in 100 mM ammonium acetate previously adjusted to the 

desired pH with either glacial acetic acid or concentrated ammonium hydroxide. 

They were incubated at room temperature for 2 hours. One half of the samples 

were then frozen on dry ice, lyophilized for a second time, resuspended in 

HAc/BSA, and immediately assayed for cAMP generating activity. The remainder 

of the samples were simply assayed for cAMP generating activity, with and 

without dilutions, at the completion of their 2-hour incubation in 100 mM 

ammonium acetate. Controls were treated in an identical fashion except that 

HAc/BSA was substituted for the pH-adjusted ammonium acetate. 100 mM 

ammonium acetate adjusted to various pH's, but without HHM-F or PTH as 

agonist, was also run in the renal cyclase assay as a control. 

Cyanogen Bromide Experiments 
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PTH or partially purified ACSF was exposed to cyanogen bromide (CNBr) 

digestion. Sample was mixed with either a twenty-five or fifty-fold excess 

(mole/mole) of CNBr dissolved in 70% formic acid and incubated at room 

temperature for four hours. The reaction was terminated by the addition of ten 

volumes of de-ionized water at 0°C and freezing on dry ice. The digests were 

then lyophilized, resuspended in HAc/BSA and assayed for cyclase stimulating 

activity. One of the digests so prepared was also run over reverse phase HPLC on 

a Vydac C-|q column with a buffer gradient of 25%-35% acetonitrile in 0.1% 

trifluoroacetic acid at a rate of one ml./min. Two ml. fractions were collected, 

lyophilized, resuspended in HAc/BSA and assayed for cyclase stimulating 

activity. 

Lectin Affinity Columns 

Lectin affinity columns were constructed as follows. Plastic tuberculin 

syringes were fitted with a pourous polystyrene plug. 0.03 cc of either 

Concanavalin-A (Con-A) or wheat germ lectin (WGL) covalently bonded to 

Sepharose beads (Con-A-Sepharose, WGL-Sepharose, Sigma, St. Louis, Mo.) was 

placed on top of the polystyrene. Samples were subsequently added to the open 

end of the syringe, and were eluted with the aid of a brief spin in a table-top 

centrifuge. 

Loading buffer for the Con-A columns consisted of 125mM sodium 

chloride, 12.5mM ammonium acetate, ImM calcium chloride and ImM manganese 

chloride adjusted to a pH of 6.0. Con-A eluting buffer consisted of the loading 

buffer plus 500mM a -D-methyl-mannoside. Loading buffer for the WGL column 
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consisted of 125mM sodium chloride and 12.5mM ammonium acetate adjusted to a 

pH of 7.0. WGL eluting buffer consisted of the loading buffer plus 0.2 M N- 

acetyl-D-glucosamine. 

Con-A binding experiments were performed in the following fashion. 

First, columns were washed with 5 mis of loading buffer, after which sample 

was added. 125 l-labelled B - HCG (kindly provided by the Gyn. Endocrinology 

Laboratory, YNHH) was used as a positive control. A 100 ul aliquot of loading 

buffer containing 0.66 ng. of125l-B -HCG having 100,000 cpm was applied to the 

column. Fifteen minutes was allowed for binding and the loading buffer was 

eluted and collected. The column was washed seven times with 100 ul of loading 

buffer; each wash was collected and saved. Seven eluting steps were then 

performed: 100 ul aliquots of eluting buffer were added to the column, were 

allowed to remain for fifteen minutes, and were eluted and saved. All fifteen 

collected fractions (one loading sample, seven washes, seven elutions) were then 

tested for the presence of 125I-S -HCG in a gamma counter. The column itself 

was also counted so that recoveries could be calculated. The above experiment 

was run in an identical fashion with partially purified ACSF. A 100 ul sample , 

containing 0.72 ng.eq. PTH of ACSF suspended in Con-A loading buffer, was 

applied to the column. The sample loading buffer, seven washes, and seven 

elutions were collected as before and were assayed for bioactivity in the renal 

adenylate cyclase assay. 

A similar preliminary experiment was performed with a wheat germ 

lectin column. A 0.7 ng.eq.PTH sample of ACSF, suspended in 50 ul of WGL loading 

buffer, was applied to the column. Fifteen minutes was allowed for binding to 

occur and then the sample buffer was eluted and saved. The column was washed 

twice with 50 ul of loading buffer, the fractions being collected and saved. 
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Following these washes, a total of three elution steps were performed: 50 ul of 

elution buffer was added, allowed to remain for fifteen minutes, and then eluted 

and saved. Finally, the sample loading buffer, the two washes, and the three 

elutions were assayed for adenylate cyclase-stimulating activity in the renal 

adenylate cyclase assay. 
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Renal Cortical Adenylate Cvclase Assay Standard Curves 

Figure 1 shows the dose-response curves of synthetic bPTH (1-34) in the 

guanyl-nucleotide amplified canine renal cortical adenylate cyclase assay 

(cyclase assay). This curve represents the averaged results from all the 

individual assays performed. As reported previously (120,125-128,137), this 

dose-response curve demonstrates that the renal adenylate cyclase assay has a 

minimum concentration detection limit of approximately 200 pg PTH/ml. It is 

linear over the range of 0.2 ng PTH/ml. to 20 ng. PTH/ml., and it reaches a 

maximum stimulation of approximately five and one half times the basal activity 

at a concentration of PTH between 20 ng./ml. and 200 ng./ml. Figure 1 also 

shows the averaged dose-response curve of the pooled HPLC - ACSF preparations 

described previously. As can be seen, this curve is nearly identical to that of 

bPTH(1-34). At the concentrations assayed, the curves are essentially linear. 

Using these curves it is possible to extrapolate and express the HHM-derived 

ACSF in PTH equivalents. Thus, a forty-fold dilution of partially purified ACSF 

(representing one of the 20 u\ aliquots described in the Methods section diluted 

out to 800 u\) can be shown to have an average ACSF concentration of 2.3 

ng.eq.PTH/ml. 

Oxidation-Reduction Experiments 

In order to ascertain whether the PTH-like bioactivity could be recovered 

from polyacrylamide gels run under reducing conditions, and in order to compare 

it to TGFs, ACSF was exposed to reducing agents. Figure 2 shows dose response 



www.manaraa.com



www.manaraa.com

38 

curves for both PTH and ACSF assayed alone or in the presence of reducing agents 

as described in the Methods section. As can be seen from these figures, at the 

two most concentrated dilutions, DTT seems to inhibit the cyclase assay mildly. 

At these same dilutions L-cysteine profoundly suppresses cAMP formation. 

However, when the reaction mixtures are assayed at greater dilutions, the curves 

converge. This demonstrates that when the assay-inhibiting effects of the 

reducing agents are diluted out, neither PTH (Fig. 2a) nor ACSF (Fig. 2b) is 

affected by the exposure to reducing conditions. Table 1 displays mean 

stimulation from four cyclase assay runs of control and reduced ACSF. Again, at 

concentrations in which DTT and L-cysteine do not affect the cyclase assay, the 

bioactivity of the samples exposed to reducing agents is identical to that seen 

with unreduced ACSF. 

TABLE 1 
ACSF DILUTIONS 

1 : 40 1 : 80 1 : 160 1 : 320 

OCMFQ - 3.316 ±0.427 2.90 ± 0.402 2.41 ± 0.390 1.82 ±0.196 

* -ME 3.651± 0.317 3.08 ± 0.405 2.4710.399 1.99 ±0.364 

DTT 2.60 ± 0.055 2.2810.178 2.0010.366 1.76 ±0.215 

L-CYS 0.035 ± 0.008 1.35 ±0.395 2.111 0.273 1.81 ±0.271 

It was known that PTH loses its bioactivity when oxidized (139). For this 

reason both PTH and the partially purified ACSF were exposed to hydrogen 

peroxide. In contrast to the reducing agent experiments, it was found that both 

of these molecules are sensitive to oxidation. Figure 3 shows the dose-response 
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curves generated by PTH and ACSF after exposure to hydrogen peroxide (H2O2) for 

varying lengths of time. PTH bioactivity is almost completely destroyed by 

exposure to 1-^02 for as little as thirty minutes (Fig. 3a). ACSF is less sensitive 

to this oxidant. Residual cyclase activity is present even after 3 hours exposure 

to H2O2 (Fig.3b). Figure 3c demonstrates the time courses for the progressive 

loss of ACSF and PTH bioactivity upon exposure to H2O2. Again, it is seen that 

ACSF is oxidized much more gradually than is PTH. 

Finally, an attempt was made to reverse the loss of bioactivity seen with 

oxidation by exposing the H2C>2-treated ACSF to reducing conditions. Figure 4 

shows the results of this sequential oxidation and then reduction. The effect of 

oxidation is not reversed by any of the three reducing conditions employed. 

pH Experiments 

In an attempt to determine whether exposure to different pH's affected 

its bioactivity, the ACSF was incubated in 100 mM ammonium acetate adjusted 

to various pH's, as described above. These experiments were prompted by the 

poor recoveries of bioactivity from ion-exchange columns used in another series 

of experiments with ACSF. Preliminary studies had suggested that the neutral 

pH's involved in the attempts at ion-exchange chromatography might be affecting 

the ACSF (Stewart, unpublished data). Ammonium acetate was the buffer used for 

the ion-exchange experiments. Because of this, and because it is volatile, 

ammonium acetate was also chosen as the buffer in these experiments. Figure 

5a shows the effects of this buffer system adjusted to pH’s from 3 to 10 on 

basal activity in the renal cortical adenylate cyclase assay. There is a marked 

inhibition of basal activity in the assay below a pH of 6. From pH's 6-9 the basal 
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activity appears to be appropriate, while at pH 10 there is a marked stimulation 

of basal adenylate cyclase activity. 

Figure 5b displays the results of two typical experiments in which either 

PTH or ACSF was incubated at various pH’s. In these experiments, the agonists 

were added directly to the cyclase assay, still dissolved in the pH-adjusted 

ammonium acetate buffer. As expected from the prior experiment, there was 

profound depression of adenylate cyclase stimulation at pH's 4 and below. At pH 

values 6-9, there was moderate (35 -40 %) loss of bioactivity as compared to 

controls. At a pH of 10, both bPTH and ACSF displayed apparent stimulation as 

compared to that seen at the other pH points. With ACSF, pH 10 gave stimulation 

above that shown by the control. Both of these curves are similar in shape to the 

curve in Figure 5a. 

Figure 5c also displays profiles of adenylate cyclase stimulation 

generated by PTH or ACSF after exposure to various pH values. However, in these 

experiments, the ammonium acetate was lyophilized and the sample was 

resuspended in the usual vehicle (HAc/BSA) prior to assay. When treated in this 

manner, there was little loss of activity for either PTH or ACSF as compared to 

controls. Bioactivity at each pH value was over 90% of control activity with PTH. 

ACSF bioactivity was greater than 95% at all except one of the pH points tested. 

At a pH of 10 there was a loss of ACSF bioactivity. 

CNBr Digest 

ACSF was subjected to cyanogen bromide (CNBr) digestion in an attempt 

to produce a peptide fragment that retained biological activity. PTH served as a 

positive control. When bPTH was exposed to a 50-fold excess of CNBr (as 

described in methods) all adenylate cyclase stimulating activity was destroyed. 
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ACSF was incubated with both a 25 and 50-fold molar excess of CNBr. The 

resulting digests had residual bioactivity, representing 11% and 13%, 

respectively, of the undigested control bioactivity (in ng.eq.PTH/ml). In order to 

ascertain whether this residual bioactivity was due to undigested ACSF or to an 

active fragment, the digests were chromatographed using reverse phase HPLC as 

described in the Methods section under "Source of ACSF". When this was done, 

the residual bioactivity eluted at 32% acetonitrile, the precise position in the 

gradient at which ACSF,not exposed to CNBr, also elutes. 

Lectin Experiments 

In order to determine whether ACSF might be a glycoprotein and also to 

evaluate the use of lectins as a purification strategy, the partially purified ACSF 

was applied to both Concanavalin A and Wheat Germ lectin columns as described 

in methods. 1>25l-labelled B-HCG was used as a positive control. As can be seen 

in figure 6-a, this glycoprotein specifically binds to a concanavalin-A sepharose 

column and is selectively eluted with good recovery from the column with a- 

methyl-mannoside, the specific eluting agent. However, when ACSF was applied 

to the columns in a similar fashion (figure 6b, 6c) bioactivity was recovered only 

in the buffer eluted from the loading step. There was no bioactivity in the 

elution fractions and overall there was a very poor recovery of the total 

bioactivity (<20% for concanavalin A, <10% for wheat germ lectin) applied to the 

columns. 
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Figure 1 

Renal adenylate cyclase stimulating activity given by 
partially purified preparations of ACSF from a human breast 
carcinoma and by bovinel-34 parathyroid hormone. Stimulation 
of the assay is expressed by the ratio of 32P-cAMP generated by a 
sample to 32P-cAMP generated by a basal or blank run. These 
curves represent the aggregate dose-response curves averaged 
over each individual assay performed. 
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Figure 2 

Results of a typical reduction experiment. Curves represent 
the dose-response curves generated by dilutions of the reaction 
mixtures described in Methods. Fig. 2a gives the results for 
bPTH(1-34); Fig. 2b gives the results for ACSF. Symbols identify 
curves representing either control PTH, control ACSF, or one of 
the reducing conditions as described in Methods. 
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Figure 3 

Results of oxidation experiments with bPTH(1-34) and 
ACSF. Curves represent the dose-response curves generated by 
dilutions of the reaction mixtures described in methods. Each 
curve represents either PTH or ACSF oxidized for a different 
length of time. Figure 3c shows the loss of bioactivity of both 
PTH and ACSF with progressively longer periods of oxidation. 
Note the more gradual loss of bioactivity seen with ACSF. 
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Figure 4 

Results of an experiment in which ACSF was oxidized and 
then subsequently reduced. As identified in the legend, curves 
represent the dose-response curves generated by control ACSF, 
ACSF oxidized for three hours in V\202, and ACSF oxidized for 
three hours and subsequently reduced as before with BME, DTT, or 
L-CYS. 
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Figure 5 

Results of pH experiments with bPTH (1-34) and ACSF. 
- 5a displays the effects of lOOmM ammonium acetate at 
different pH's on the renal cyclase assay. 

- 5b represents the profile of bioactivity of PTH and ACSF over 
various pH's. In these experiments the sample was added to the 
cyclase assay dissolved in the pH-adjusted ammonium acetate. 
Controls are equivalent amounts of ACSF or PTH assayed in the 
standard fashion as described in Methods. 

- 5c also represents the profile of bioactivity of PTH and ACSF 
over various pH's. However, in these experiments the ammonium 
acetate was lyophilized and the samples were resuspended in 
5mM acetic acid / 0.5 mg/ml BSA immediately prior to assay. 
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Figure 6 

Results of Lectin experiments with ACSF. 

- 6a. As described in Methods, 125l radiolabelled B -HCG was 
used as a positive control for the Concanavalin A column. The 
figure represents a profile of cpm recovered from the various 
loading, washing, and eluting fractions applied to the column. 

- 6b. This figure represents a profile of ACSF bioactivity 
recovered from the various loading, washing, and eluting 
fractions applied to the Concanavalin-A column. 

- 6c. This figure displays the profile of ACSF bioactivity 
recovered from the loading sample buffer, the two washes, and 
the three elutions applied to the Wheat Germ Lectin column. 
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Several laboratories are currently attempting to identify and to purify 

the factor or factors responsible for HHM. The experiments described herein 

were undertaken in pursuit of these goals. They were designed to investigate 

how the adenylate cyclase-stimulating factor associated with HHM behaves when 

it is exposed to a series of different physical and chemical conditions. The 

information gleaned from these experiments has been valuable in three respects. 

First, it has helped to describe more fully the physical characteristics of the 

factor(s). Second, it has provided some valuable guidelines in constructing 

purification schemes. Finally, it has allowed comparison of the adenylate 

cyclase stimulating activity and TGF activity, the two leading etiologic 

contenders proposed to be responsible for HHM. 

The partially purified ACSF used in these studies causes potent dose- 

dependent stimulation of the renal cortical adenylate cyclase assay. As 

previously observed (120,125-128,137), the dose-response relationship is 

essentially identical to that given by PTH. Since the averaged dose-response 

curvies of ACSF and PTH so closely parallel each other, at least at the 

concentrations tested, the two proteins probably stimulate the adenylate cyclase 

system in an identical fashion. This fact lends further support to the notion that 

the ACSF interacts directly with the PTH receptor. 

The ACSA associated with HHM is not sensitive to chemical reduction. L- 

cysteine and DTT exert an adverse effect on the renal adenylate cyclase assay. 

However, when these agents are diluted out so that they no longer affect the 

assay, none of the three reducing agents employed diminishes the bioactivity of 
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the ACSF. The concentrations of the three reducing agents employed, 300mM 

BME, 130 mM L-cysteine, or 65mM DTT, represent severe reducing conditions. 

Each of these conditions has been shown to be capable of dissociating disulfide- 

linked subunits of other purified and partially purified protein hormones 

(114,138,139). Therefore, it can be stated with some certainty that disulfide 

bonds are not crucial to the adenylate cyclase-stimulating activity associated 

with HHM. 

Lack of sensitivity to reducing agents stands at odds with the 

descriptions of TGF activity reported by Mundy and his laboratory. TGFs in 

general are susceptible to reducing agents, and reports implicating TGFs as 

pathogenetic factors in HHM have stressed susceptability to the reducing agent 

DTT (114-118). This difference in behavior with respect to reducing conditions 

demonstrates that the TGF and adenylate cyclase bioactivities associated with 

HHM have different primary and tertiary structures. These bioactivities may 

reside in completely different peptides or they may reside in different regions of 

the same molecule. Research currently underway in Dr. Stewart's laboratory 

suggests that part of the adenylate cyclase stimulating protein not directly 

associated with the ACSA may contain disulfide bonds. Preliminary SDS-PAGE 

extraction studies indicate that under reducing conditions (50mM DTT), the 

adenylate cyclase-stimulating factor(s) may dissociate into subunits, one which 

contains the ACSA and one which does not (Stewart A, Burtis W, unpublished 

observations). It is interesting to speculate whether both bioactivities may 

reside in the same molecule, the TGF activity dependent upon disulfide bonds, the 

ACSA activity independent of such bonds. 

In contrast to reduction, ACSA is sensitive to oxidation by hydrogen 

peroxide. Furthermore, this oxidation seems to be irreversible. PTH is also 
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sensitive to hydrogen peroxide as has previously been shown (139). However, 

PTH has been shown to regain its bioactivity with subsequent reduction (139). 

Under conditions of acidic pH, oxidation by hydrogen peroxide is fairly 

specifically targeted to methionine residues (140,141). Although the pH of these 

reactions was not controlled, the buffer containing the ACSF is a dilute acid 

(5mM acetic acid). Hence, the oxidation reaction most likely altered methionine 

residues. Other possible but less likely amino acid targets are cysteine, tyrosine 

and tryptophan (141). The observed susceptibility to hydrogen peroxide suggests 

that one of these four amino acids is important in maintaining the integrity of 

the ACSF. The most likely of the four is methionine, but methionine oxidation 

should be reversible upon subsequent reduction (141). It may be that there is 

some impediment to refolding of the protein resulting from the manner in which 

the reduction reactions were performed, or from features inherent in the primary 

structure of the molecule. An alternative is that oxidation causes an ireversible 

change in the protein, perhaps by altering one of the three amino acids other than 

methionine, mentioned above. 

It is interesting to compare the time courses of oxidation for PTH and 

ACSF. ACSF loses its bioactivity very gradually over several hours. PTH is 

completely inactivated much more quickly, within thirty minutes. This 

difference might be explained in one of two ways. First, ACSF may be a more 

complexly folded protein with the oxidative targets partially protected within 

the interior of the molecule. On the other hand, it may be that PTH is affected by 

the rapid oxidation of methionine, while ACSF bioactivity is affected by the 

slower oxidation of some other amino acid. Whatever the molecular basis for the 

behavior of ACSF, it is clear that care should be taken to prevent oxidation during 

the purification and handling of the peptide. 
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In their attempts to further purify ACSF, Stewart and his associates have 

employed ion-exchange chromatography. However, using this method they 

experienced substantial loses of bioactivity. Preliminary experiments suggested 

that the ACSF might be unstable at the neutral pH’s involved in these studies. For 

this reason, the activity of ACSF at different pH’s was examined in detail. It is 

clear from these experiments that the buffer system used, 100 mM ammonium 

acetate, exerts both a pH-dependent inhibition and stimulation of the renal 

adneylate cyclase assay. There is profound suppression of cAMP formation at the 

most acidic values and there is autonomous stimulation of cAMP production at 

the most basic values. In light of these effects, it is difficult to interpret the 

experiments in which the sample was added to the assay dissolved in ammonium 

acetate. It is impossible to tell whether the observed loss of bioactivity is due 

to the ammonium acetate itself, or to a pH induced changed in the ACSF. If there 

is such a change in the ACSF, it is a reversible one. In the set of experiments in 

which the buffer is lyophilized before the sample is assayed, there is full 

recovery of bioactivity. The only exception is at pH 10, where there is loss of 

ACSF bioactivity. This loss of activity may be due to partial denaturation of the 

protein (142) or perhaps to a conformational change secondary to the loss of 

charge on a basic amino acid(s). In any case, it seems unlikely that the poor 

recovery from ion exchange chromatography can be explained by any pH- 

dependent, irreversible changes in the protein. The losses more likely were due 

to irreversible binding of ACSF to the ion-exchange column. 

ACSF was digested with cyanogen bromide in the hopes of producing a 

peptide fragment that retained biological activity. Such a fragment would be 

more easily sequenced, and the sequence obtained would be of the biologically 

active part of the molecule. The digests did retain some activity in the 
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adenylate cyclase assay, but HPLC analysis demonstrated that the activity 

represented residual undigested ACSF. It is interesting that under the conditions 

used in the experiments, PTH was completely digested while ACSF was not. This 

mirrors the results of the oxidation experiments. Since CNBr cleaves peptide 

chains at methionine residues (143), these experiments again suggest that this 

amino acid may be important to the protein's bioactivity and that it might be 

located in a semi-protected domain in an interior portion of the molecule. These 

CNBr experiments are but initial steps in the effort to generate an active 

fragment. It will be important to try more gentle CNBr conditions as well as 

site-specific enzymatic reactions in an attempt to partially digest the protein. 

Glycoproteins are ubiquitous in nature. Therefore, it is reasonable to 

inquire whether the ACSF might be such a molecule. However, since the factor is 

not yet purified to homogeneity, submitting it to the available chemical methods 

for the detection of carbohydrate content would be of limited value. If 

carbohydrate were detected, it would not necessarily have been liberated from 

the adenylate cyclase-stimulating protein. Another way to approach this 

problem is to attempt to specifically bind and elute the adenylate cyclase- 

stimulating bioactivity to and from a lectin carbohydrate affinity column. 

Lectins are proteins of nonimmune origin found in plants and microorganisms 

that have the ability to noncovalently bind certain carbohydrate moieties (144). 

Binding ACSF to such a column would both characterize it as a glycoprotein and 

also offer a quick and simple purification step. With this goal in mind, partially 

purified ACSF was applied to concanavalin A and wheat germ lectin, both 

covlently attached to Sepharose beads. Conconvalin A recognizes a -mannose and 

a -glucose residues; wheat germ lectin recognizes 8-N-acetyl glucosamine and a 

-N-acetylneuraminic acid (144). As shown in the results section, it did not seem 
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as if either of these lectins specifically bound the factor, suggesting that ACSF 

does not contain any of the 4 sugar residues mentioned above in accessible 

locations. However, the low recovery of activity from these experiments makes 

any interpretation perilous. Additional controls must be run to investigate the 

possibilities that the ACSA bound nonspecifically to the Sepharose beads or that 

the columns somehow destroyed the activity (perhaps via protease 

contamination). These experiments represent preliminary attempts and will be 

expanded to include different lectins with different carbohydrate binding 

specificities as well as the aforementioned controls. 

With the experiments discussed above, the groundwork has been set to 

complete the final purification of the adenylate cyclase-stimulating factor or 

factors involved in HHM. This will allow a direct comparison of this protein to 

the TGF activity also implicated in the syndrome. With the recent finding of 

Burtis and Stewart, that the protein appears to be composed of subunits, one 

having ACSA and the other not having this activity, it is entirely possible that 

both the TGF activity and the ACSA activities reside in the same molecule. This 

hypothesis might also explain the disparity in the way in which the two 

bioactivities respond to reducing conditions. Perhaps the TGF activity requires 

the integrity of the disulfide bonds linking the two subunits together; the 

adenylate cyclase stimulating activity apparently does not. Whether or not the 

ACSF is eventually shown to possess TGF activity, it seems likely that its 

significance will go beyond the realm of HHM. The work of Merendino £L sL 

(132) suggests that it plays a role in physiology as well as pathophysiology. The 

question of its exact role in skin physiology warrants further investigation, a 

task which will be much more easily accomplished once the protein is purified 

and sequenced. 
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